讲座题目:Nonparametric Modelling of the Covariance Structures
-
主讲人: 叶华军博士, 联合国际学院
- 时间: 2011年11月16号(星期三)下午3点30分-4点
- 地点: E304
- 摘要:
-
When nonparametric modelling longitudinal data smoothing splines specify work-
ing covariance structures. Although asymptotically consistent when using arbitrary working
covariance structures, the smoothing splines have the smallest variances when assuming the
true covariance structures (Lin, et al. 2004). In this paper we parameterize the mean and co-
variance nonparametric regression functions with piecewise quadratic splines (Ruppert, et al.
2003), and provide smooth estimates of the mean and covariance regression functions through
maximizing the penalized likelihood based on a mixed model approach. We illustrate the pro-
posed approach via analyzing two well-known data sets, the Cattle data (Kenward,1987) and
the CD4+ cell data (Diggle, et al. 1994). A small simulation study is conducted to evaluate
the efficacy of the method.